眼用原位凝胶研究进展

李颖,汤湛,王俏

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (14) : 1174-1179.

PDF(1025 KB)
PDF(1025 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (14) : 1174-1179. DOI: 10.11669/cpj.2015.14.003
·综 述·

眼用原位凝胶研究进展

  • 李颖,汤湛,王俏*
作者信息 +

Recent Advances of in Situ Gel for Ocular Drug Delivery

  • LI Ying, TANG Zhan, WANG Qiao*
Author information +
文章历史 +

摘要

原位凝胶是一类以溶液状态给药,并在生理环境下相变为凝胶状态的聚合物,具有溶液和凝胶的双重优势。普通滴眼液存在滞留时间短,生物利用度低等问题。近年已有较多文献将新型原位凝胶应用于眼部给药,通过延长眼部滞留时间来提高药物在眼部的生物利用度。笔者通过文献检索,从原位凝胶的分类及在眼部给药系统中的应用等方面,论述不同类别原位凝胶的研究现状和关键技术性问题,并分析了眼用原位凝胶的未来发展趋势。

Abstract

In situ gel is liquid upon instillation and undergo phase transition under physiological conditions to form visco-elastic gel with dual advantages of liquid and gel.Ordinary eye drops exist a problem of short residence time with low bioavailability. In recent years, an impressive number of novel in situ gel systems have been reported for ocular drug delivery to increase bioavailability with the extension of corneal residence time. In this article, the classification and application about in situ gel for ocular drug delivery are reviewed, then the study status and the key technical problem of the in situ ophthalmic gel in detail are described. In addition, the future advancement of this field is also discussed.

关键词

原位凝胶 / 眼部给药系统 / 聚合物

Key words

in situ gel / ocular drug delivery system / polymer

引用本文

导出引用
李颖,汤湛,王俏. 眼用原位凝胶研究进展[J]. 中国药学杂志, 2015, 50(14): 1174-1179 https://doi.org/10.11669/cpj.2015.14.003
LI Ying, TANG Zhan, WANG Qiao. Recent Advances of in Situ Gel for Ocular Drug Delivery[J]. Chinese Pharmaceutical Journal, 2015, 50(14): 1174-1179 https://doi.org/10.11669/cpj.2015.14.003
中图分类号: R944   

参考文献

[1] ALMEIDA H, AMARAL M H, LOBAO P, et al. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today, 2014, 19(4): 400-412.
[2] ALMEIDA H, AMARAL M H, LOBAO P, et al. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview . Expert Opin Drug Deliv, 2013, 10(9): 1223-1237.
[3] PAHUJA P, ARORA S, PAWAR P. Ocular drug delivery system: A reference to natural polymers . Expert Opin Drug Deliv, 2012, 9(7): 837-861.
[4] DANIELS J T, DART J K, TUFT S J, et al. Corneal stem cells in review . Wound Repair Regen, 2001, 9(6): 483-494.
[5] KLOUDA L, MIKOS A G. Thermoresponsive hydrogels in biomedical applications . Eur J Pharm Biopharm, 2008, 68(1): 34-45.
[6] HAO J, WANG X, BI Y, et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery . Colloids Surf B Biointerfaces, 2014, 114: 111-120.
[7] LOU J, HU W, TIAN R, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles . Int J Nanomed, 2014, 9(1): 2517-2525.
[8] GRATIERI T, GELFUSO G M, ROCHA E M, et al. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery . Eur J Pharm Biopharm, 2010, 75(2): 186-193.
[9] GRATIERI T, GELFUSO G M, DE FREITAS O, et al. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel . Eur J Pharm Biopharm, 2011, 79(2): 320-327.
LI J, LIU H, LIU L L, et al. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem Pharm Bull (Tokyo), 2014, 62(10): 1000-1008.
CHANG C, ZHANG L. Cellulose-based hydrogels: Present status and application prospects . Carbohyd Polym, 2011, 84(1): 40-53.
RUEL-GARIéPY E, LEROUX J. In situ-forming hydrogels—review of temperature-sensitive systems . Eur J Pharm Biopharm, 2004, 58(2): 409-426.
BAIN M K, BHOWMICK B, MAITY D, et al. Effect of PVA on the gel temperature of MC and release kinetics of KT from MC based ophthalmic formulations . Int J Biol Macromol, 2012, 50(3): 565-572.
BAIN M K. Control of thermo reversible gelation of methylcellulose using polyethylene glycol and sodium chloride for sustained delivery of ophthalmic drug . J Appl Polym Sci, 2010, 118(2): 631-637.
MIYAZAKI S, SUZUKI S, KAWASAKI N, et al. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride . Int J Pharm, 2001, 229(1-2): 29-36.
UR-REHMAN T, TAVELIN S, GROBNER G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels . Int J Pharm, 2011, 409(1-2): 19-29.
GUPTA H, VELPANDIAN T, JAIN S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery . J Drug Target, 2010, 18(7): 499-505.
GUPTA H, AQIL M, KHAR R K, et al. Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention . Drug Deliv, 2013, 20(7): 306-309.
SONG J, BI H, XIE X, et al. Preparation and evaluation of sinomenine hydrochloride in situ gel for uveitis treatment . Int Immunopharmacol, 2013, 17(1): 99-107.
WU H, LIU Z, PENG J, et al. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery . Int J Pharm, 2011, 410(1-2): 31-40.
SINGH J, CHHABRA G, PATHAK K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: In vitro. ex vivo evaluation and pharmacodynamic study . Drug Dev Ind Pharm, 2013, 40(9): 1223-1232.
PATHAK M K, CHHABRA G, PATHAK K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: Ex-vivo transcorneal permeation, corneal toxicity and irritation testing . Drug Dev Ind Pharm, 2013, 39(5): 780-790.
RUPENTHAL I D, GREEN C R, ALANY R G. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release . Int J Pharm, 2011, 411(1-2): 69-77.
TAYEL S A, EL-NABARAWI M A, TADROS M I, et al. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits . Int J Pharm, 2013, 443(1-2): 293-305.
YU S, WANG Q M, WANG X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate . Int J Pharm, 2015, 480(1-2): 128-136.
FERNANDEZ-FERREIRO A, FERNANDEZ B N, VARELA M S, et al. Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery . Beilstein J Org Chem, 2014, 10: 2903-2911.
LIU Y, LIU J, ZHANG X, et al. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery . AAPS Pharm Sci Tech, 2010, 11(2): 610-620.
NANJWADE B K, DESHMUKH R V, GAIKWAD K R, et al. Formulation and evaluation of micro hydrogel of moxifloxacin hydrochloride . Eur J Drug Metab Pharmacokinet, 2012, 37(2): 117-123.
NAGARWAL R C, KUMAR R, DHANAWAT M, et al. Modified PLA nano in situ gel: A potential ophthalmic drug delivery system . Colloids Surf B Biointerfaces, 2011, 86(1): 28-34.
KATIYAR S, PANDIT J, MONDAL R S, et al. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma . Carbohydr Polym, 2014, 102: 117-124.
GEETHALAKSHMI A, KARKI R, JHA S K, et al. Sustained ocular delivery of brimonidine tartrate using ion activated in situ gelling system . Curr Drug Deliv, 2012, 9(2): 197-204.
WANG L H, CHE X, GUO Y X, et al. Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: Preparation and in vitro-in vivo evaluation . Drug Dev Ind Pharm, 2014, 40(10): 1402-1410.
HE W, GUO X, FENG M, et al. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in-situ gels . Int J Pharm, 2013, 458(2): 305-314.
DUAN Y, CAI X, DU H, et al. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin . Colloids Surf B Biointerfaces, 2015, http://dx.doi.org/10.1016/j.colsurfb.2015.02.007.

基金

浙江省医学重点学科群项目(XKQ-010-001);浙江省科技计划项目(2012F10005);浙江省医科院青年基金资助项目(2013Y002);浙江省医药卫生科技项目(2014KYB068)
PDF(1025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/